

TopoClusters for UE studies using 900 GeV data

S.Chekanov, J.Proudfoot, R.Yoshida, J.Zhang (HEP division, ANL, USA)

> C.Bertella, P.Francavilla, C.Roda (Universita` e I.N.F.N. Pisa, Italy)

> > **April 7, 2010**

UE meeting, Status report

Goals

- Use TopoClusters for the UE studies
 - Systematically completely independent of tracking
 - Look at a complete final state (charged & neutral particles)
 - More relevant for future jet-based studies
- Understand relationship between a particle and a TopoCluster
- ◆ Understand energy scale, resolution, unfolding procedure & systematic
- ◆ As a side study, to check what exactly goes into the jet constituents

Picture from P.Loch's talk

Expected features:

- threshold effect (for TopoClusters with energy ~1 GeV, <E/p> ~ 0.3)
- energy scale uncertainties
- magnetic field distorts the initial direction of charged particles entering the calorimeter
- large resolution (picking highest-pT cluster does not always means going to a large energy scale)
- particles with large pT inside jets can be represented by fewer clusters (overlap effects)
 - can lead to a significant unfolding correction at large pT

Event selection and observables

- Good runs Solenoid=ON, Toroid=ON
 - 141565, 141707,141746,141748,141811,142166,142191,142193,142195,142383
- ◆ Monte Carlo sample: ATLAS-GEO-08-00-02 (r1051)
- ◆ L1_MBTS_1 trigger
- At least 3 tracks for the primary vertex
- Calibrated TopoClusters

Analysis is done using ESD's (ESD->Ntuples->Histograms) at ANL Tier3

UE measurements:

Repeat the tracking measurements presented in ATL-COM-PHYS-2010-164 and ATL-COM-PHYS-2010-164

- Select on the highest pT particle (cluster)
- Use it as an energy scale
- Calculate difference in azimuthal angle between particle and any other particle in event
- Repeat the same for different pT's of the leading cluster
- Look at different regions (toward, transverse, away) and
 - <pT> as a function of pT(lead)
 - <pT> as function of N(clusters)
 - Same for densities and energy flows

S.Chekanov (ANL)

Plan of this talk

- Discuss TopoClusters after calibration.
- Reconstruct detector-level distributions, correction factors, unfolded distributions
- What measurements can be considered?
 - Must be sensitive to the physics we are interested in (i.e.UE)
 - Must be instrumentally well measured
 - ◆ Small bin-by-bin correction factors: C= N(gen)/N(reco) = purity / efficiency
 - Means small instrumental systematics
 - Small sensitivity to miscalibration, cut threshold effects, energy scale etc.
- Look at the EM-scale. Can the EM-scale TopoClusters change the conclusion
- Use the central region |eta|<2.5
 - easier to control the scale, possible cross check with tracks
 - under pressure of moving towards 7 TeV data...

TopoClusters at calibrated scale

2

Look at Calibrated TopoClusters. Use MC09 MinBias PYTHIA vs 900 GeV data

0.04

0.03

0.02

0.015

0.01

0.005

0.025

. 6.035

0.25

φ [rad]

But good correlation between <N(clusters)> and <N(truth)

Good agreement between data and MC for all kinematic variables Small different between data and MC for small-N (diffraction!)

δφ measurements: average pT

- "birth" of the leading jet (at δφ=0) and second leading jet (δφ=-π,π)with increase of pT
- Shows "average size" of leading ($\delta \phi = 0$) and second leading jet
- Perujia0 tune is significantly below the data
- Unlike previous measurement, correction factors are small.

δφ measurements: particle densities

- "birth" of the leading jet (at $\delta \phi = 0$) and second leading jet ($\delta \phi = -\pi, \pi$)with increase of pT
- Shows "average size" of leading ($\delta \phi$ =0) and second leading jet
- Differences with Pythia MinBias in shapes and normalization
- Correction factors are not small, but the same difference between data and MC is already present at
 the detector levels. Similar conclusion is obtained for average-pT flow (also similar correction factor)

S.Chekanov (ANL)

Densities as a function of pT(lead)

the bin-by-bin corrections!

p_(lead) [GeV]

p_(lead) [GeV]

Average pT as a function of multiplicities

Systematic uncertainties

- ◆ Reject events with N(clusters)<3 (diffraction)</p>
- ±5% energy scale
- ◆ 10 MeV electronic nose shift in MC
- \pm 0.025 rad for cluster centers φ and η (one-cell shift)
- ◆ +10% extra material.
- Using Peruji0 for unfolding
- Repeat the analysis using EM-scale clusters
- Working on the pi0 peak to understand systematics

Figures with systematics included

Results are similar as in the UE/MinBias tracking notes

ATL-COM-PHYS-2010-164

Summary

- Studies based on TopoClusters confirm the conclusions for charged-particle UE studies.
 - MC tunes have smaller particle activity in the transverse regions
 - Monte Carlo tunes disagree with data
 - the largest problem with Perujia0 and DW tunes
- Provide an independent check of track-based measurements
- Not every distribution done using tracks can be repeated using TopoClusters due to resolution and overlap effects
- We will concentrate on the distributions which have small bin-by-bin corrections using calibrated TopoClusters
 - <pT> vs N and <pT> as function δφ have detector correction ~1
- Finish the draft note and move forward with 7 TeV data
 - Convert 7 TeV D3PD (or ESD, AOD) to ntuples suitable for analysis
 - Smaller size, fast turnover, faster systematics checks

S.Chekanov (ANL)